The present study optimized the submerged fermentation conditions of Pediococcus pentosaceus Sanna 14 culture to improve bacteriocin yield by applying response surface methodology (RSM) and hybrid artificial neural network-genetic algorithm (ANN-GA). A full factorial central composite design (CCD) of RSM was applied to assess the effect of four principle variables, i.e., pH (4.08.0), agitation (120220 rpm), sucrose (2040 g/l), and peptone (520 g/l), on the yield of bacteriocin. The RSM optimized the experimental results of pH (7.0), agitation (200), sucrose (40 g/l), and peptone (20 g/l), and supported a higher yield (2.4 g/l) of bacteriocin and was validated applying ANN-GA methodology. The RSM bacteriocin yield (2.4 mg/l) was found to match with the ANN-predicted yield (2.4 mg/l). GA results confirmed the genetic fitness of the culture of P. pentosaceus Sanna 14 during fermentation. The present study registered a sixfold increase in bacteriocin yield (2.4 mg/l) compared to the yield (0.4 mg/l) of the unoptimized process conditions.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
We use cookies and other tracking technologies to work properly, to analyze our website traffic, and to understand where our visitors are coming from. More InfoGot It!