Home|Journals|Articles by Year|Audio Abstracts
 

Original Research



A new approach for green synthesis and characterization of Artemisia L. (Asteraceae) genotype extracts -Cu2+ nanocomplexes (nanoflower) and their effecitve antimicrobial activity

Ayse Baldemir Kilic, Cevahir Altınkaynak, Nilay Ildiz, Nalan Ozdemir, Vedat Yilmaz, Ismail Ocsoy.




Abstract

In this study, we have demonstrated the fabrication of novel organic-inorganic nanobio-antimicrobial agents called “nanoflowers” (NFs) and elucidate the increase in the antimicrobial activity of NFs. This is the first report that the NFs were formed of plant extracts as the organic components and copper (II) ions (Cu2+) as the inorganic component. The Artemisia L. (Asteraceae) methanol extracts from three genotypes including A. absinthium L. (Aa), A. vulgaris L. (Av) and A. ludoviciana Nutt. (Al) were selected in the NF synthesis. The effect of the plant extract concentrations on the morphology of NFs was examined. Most regular and uniform flower-shaped morphologies were observed when a concentration of 0.1 mg mL-1 plant extract was used in the synthesis of NFs. The syntesized NFs were characterized with several techniques such as scanning electron microscopy (SEM), fourier transform infrared spectrometer (FT-IR), energy-dispersive X-ray (EDX) and X-ray diffraction analysis (XRD). The NFs exhibited much antimicrobial activity against the pathogens even at low concentrations compared to the extracts. The MICs and MBCs values for NFs were found to be range between 0.4 to 40 μg mL-1 and 40 to 400 μg mL-1 while those values for Aa, Av and Al extracts were ranged from 500-2000 μg mL-1 and 1000-4000 μg mL-1 for the studied pathogens, respectively.

Key words: Artemisia extracts • hybrid nanoflower • inhibitory property • bacterial and fungal pathogens.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.