RECOGNITION OF ARABIC HANDWRITTEN CHARACTERS USING RESIDUAL NEURAL NETWORKS
Ahmad T. Al- Taani, Sadeem T. Ahmad.
Abstract
This study proposes the use of Residual Neural Networks (ResNets) to recognise Arabic offline isolated handwritten characters including Arabic digits. ResNets is a deep learning approach which showed effectiveness in many applications more than conventional machine learning approaches. The proposed approach consists of three main phases: pre-processing phase, training the ResNet on the training set, and testing the trained ResNet on the datasets. The evaluation of the proposed approach is performed on three available datasets: MADBase, AIA9K, and AHCD. The proposed approach achieved accuracies of 99.8%, 99.05% and 99.55% on these datasets, respectively. It also achieved a validation accuracy of 98.9% on the constructed dataset based on the three datasets.
Key words: Residual Network, Deep Learning, Deep Neural Networks, Arabic Handwritten, Characters Recognition.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
We use cookies and other tracking technologies to work properly, to analyze our website traffic, and to understand where our visitors are coming from. More InfoGot It!