Home|Journals|Articles by Year

Directory for Medical Articles
 

Open Access

Original Article



Effect of various stabilizers on the stability of lansoprazole nanosuspension prepared using high shear homogenization: Preliminary investigation

Shobha Ubgade, Aditi Bapat, Vaishali Kilor.

Abstract
The purpose of the current research work was to prepare a nanosuspension of the model drug lansoprazole (LSP) and investigate the effect of various stabilizers on the stability of the nanosuspension prepared using the high shear homogenization technique. In this study, polymeric stabilizers like polyvinylpyrrolidone K-30, polyvinylpyrrolidone K-90, polyvinyl alcohol, sodium alginate, and hydroxypropyl methylcellulose E15 and surfactants like sodium lauryl sulfate and Tween 80 were explored. The prepared nanosuspensions were evaluated for particle size distribution (PSD), polydispersity index (PI), zeta potential, and drug loading. Saturation solubility and in-vitro dissolution studies of optimized nanosuspension and coarse LSP powder were also carried out to determine the extent of solubility enhancement. PSD and zeta potential revealed that all the stabilizers when used alone could not significantly reduce the particle size and stabilize the colloidal dispersion. However, a combination of polymeric stabilizer and surfactant showed significant particle size reduction with an average particle size of 428.5 nm, PI 0.363, and a stable zeta potential value of −25.8 mV. Therefore, it can be concluded that LSP nanosuspension prepared by the high shear homogenization technique can be effectively stabilized by a combination of stabilizers.

Key words: nanosuspension, lansoprazole, stability, high shear homogenization, stabilizer






Similar Articles

Full-text options


Latest Statistics about COVID-19
• pubstat.org


Add your Article(s) to Indexes
• citeindex.org






Journal Finder
Covid-19 Trends and Statistics
CiteIndex.org
CancerLine
FoodsLine
PhytoMedline
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.