Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Optimization of process and conditions for enhanced xylanase production under SSF using inexpensive agro-industrial waste

Vimalashanmugam Kanagasabai, Karuppaiya Maruthai.




Abstract
Cited by 0 Articles

The usage of agricultural wastes for enzymes production is considered an essential part in any approach to accomplish goals to reduce environmental pollution and disposal of waste. In the present investigation, xylanase enzyme production by Aspergillus fumigatus using agro-industrial waste sugarcane bagasse with solid state fermentation was studied by keeping the best possible values of process variables, substrate concentration, temperature, incubation time, initial moisture content, and initial pH of the medium. The above-mentioned variables affecting the fermentation conditions were optimized using response surface methodology (RSM). To estimate individual and interaction effects, the central composite design was used. The most favorable process variables attained were substrate concentration = 9.88 g, temperature = 35.73°C, incubation time = 120.05 hours, initial moisture content = 71.30%, and initial pH = 4.98. From analysis of variance, an R2 -value of 0.9848 signifies a good agreement between the experimental and predicted values for sugarcane bagasse. Also, the fitness of the model is confirmed by a high R2 -value. The RSM shows that xylanase activity of 417.521 IU/gds was achieved for the optimized process environment. In addition to xylanase activity, a poor quantity of carboxy methyl cellulase activity was also recorded. This study is carried out for cost-effective xylanase production by using agro-industrial waste as cheaper carbon source. It can reduce environment pollution and also minimizes the cost for disposal of industrial waste.

Key words: Keywords: Aspergillus fumigatus, central composite design, response surface methodology, sugarcane bagasse, xylanase






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.