Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Molecular Docking Approach of Bryophyllum Pinnatum Compounds as Atherosclerosis Therapy By Targeting Adenosine Monophosphate-Activated Protein Kinase and Inducible Nitric Oxide Synthase

Yuyun Yuniwati, Mokhamad Fahmi Rizki Syaban, Salsabila Ghina Anoraga, Faradilah Lukmana Sabila.




Abstract

Background: Bryophyllum pinnatum is a herbal medicine from Indonesia which has an anti-inflammatory effect. Adenosine monophosphate-activated protein kinase (AMPK) and inducible nitric oxide synthase (iNOS) play a function in thickening and inflammation in atherosclerosis disease. Objective: This research aims conducted to know the potential of Bryophyllum pinnatum as a therapy for atherosclerosis by targeting AMPK and iNOS. Methods: We employed a molecular docking technique to interact active compounds of Bryohyllum pinnatum with AMPK and iNOS, which were retrieved on the protein databank. Molecular docking analysis utilizing tools such as Pyrx 9.5, Pymol, and Discovery Studio, to support the interaction between the compound and protein. Molecular Dynamic (MD) simulation also performed using CABS-FLEX 2.0 server to know the stability interaction. Results: Bryophillin B was an active compound that possesses significant binding to AMPK and iNOS. It had same binding pocket as native ligand, and Bryophyllin B has a stronger interaction with AMPK. Based on the RMSF, the interaction biding complex Bryophyllin B with AMPK and iNOS were stable Conclusion: Bryophillin B was predicted to have potential therapy for atherosclerosis disease.

Key words: Bryophyllum pinnatum, AMPK, iNOS, In Silico, Herbal medicine.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.