Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJEE. 2022; 8(2): 165-178


Deep Learning in Vehicle Detection Using ResUNet-a Architecture

Zohreh Dorrani, Hassan Farsi, Sajad Mohamadzadeh.




Abstract

Vehicle detection is still a challenge in object detection. Although there are many related research achievements, there is still a room for improvement. In this context, this paper presents a method that utilizes the ResUNet-a architecture – that is characterized by its high accuracy - to extract features for improved vehicle detection performance. Edge detection is used on these features to reduce the number of calculations. The removal of shadows by combining color and contour features - for increased detection accuracy - is one of the advantages of the proposed method and it is a critical step in improving vehicle detection. The obtained results show that the proposed method can detect vehicles with an accuracy of 92.3%. This - in addition to the obtained F-measure and η values of 0.9264 and 0.8854, respectively - clearly state that the proposed method - which is based on deep learning and edge detection - creates a reasonable balance between speed and accuracy.

Key words: Vehicle detection; ResUNet-a; Convolutional neural network; Deep learning.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.