This paper describes a simple biosynthesis of silver nanoparticles (SNs) from aqueous stem bark extract of Syzygium cumini (SC), a natural product. The formation of SNs was confirmed and optimized by measuring surface plasmon resonance (SPR) peak around 420 nm by using UV-visible spectroscopy (UV-Vis). The possible functional groups of SC bark extract and their changes after treating with aqueous silver nitrate were evaluated by Fourier transform infrared spectroscopy (FTIR). The size of synthesized SNs was measured by dynamic light scattering (DLS) analysis, and morphology was examined by transmission electron microscopy (TEM) in nano range. The average size of SNs is ~14 nm and monodispersed. The effect of variation of bark extract amount, silver nitrate concentration, time and pH on the synthesis of SNs was investigated at different volumes. Antibacterial activity of SC-SNs was studied taking into account Bacillus subtilis (bacillus) and Escherichia coli (E.coli). The characteristics of the facial SC-SNs formed suggest for biomedical application as chemical sensors in the future.
Key words: Biosynthesis, Syzygium cumini, Natural product, Silver nanoparticles, and Antimicrobial activity.
|