Drug discovery from microbial secondary metabolites and pigmented compounds have tremendous application potential against several diseases, including cancer. The present work aimed to evaluate the cytotoxic potential of a yellow pigment (MY3) isolated from a bacteria, Micrococcus terreus, on cancer cells (in vitro). The cytotoxicity of MY3 on HeLa (the cervical cancer cell line), HepG2 (liver cancer cell line), and Jurkat (leukemia) was investigated by various assays. MY3 had significantly inhibited the viability of HeLa, HepG2, and Jurkat cell lines with IC50 values of 10.24, 12.4, and 11.3 µg/ml, respectively, and it had exhibited least toxicity to human lymphocytes and Chinese Hamster Ovary cells. Initiation of apoptosis, decreasing viable cell counts, fragmentation of DNA, increased caspase-3, 7, and 10 activity, and cellular cytotoxicity were clearly seen in the cells that underwent pigment treatment. Liquid chromatography-mass spectrometry analysis of the thin layer chromatography purified pigment (MY3) indicated the probable presence of bactobolin as the major compound, which was reported earlier as an anticancer compound in the literature.
Key words: Cytotoxicity, LC-MS, yellow pigment, Caspase, Micrococcus terreus
|