Comparing the Effects of Krebs Plus Verapamil Solution on Endothelial Function of Harvested Human Greater Saphenous Vein with Heparinized Blood, an Invitro Study
Introduction: Integrity of the great saphenous vein (GSV) endothelium is the most important key element for long-term patency rate of grafts in coronary artery bypass graft (CABG). Storage solutions play an important role in maintaining viability of vein endothelium. Diminished nitric oxide (NO) because of endothelial dysfunction may facilitate vascular inflammation and formation of atherosclerotic plaque. Aim: So, we decided to find a reasonable alternative preservative solution instead of heparinized blood (HB) by measuring NO concentration with Griess assay. Material and Method: SVG samples were obtained from 54 patients undergoing elective CABG. 3 mm rings were stored in solutions: heparinized blood (HB), Krebs (K), Krebs + Propranolol (K+P) 6.66 g/l, Krebs + Adrenaline (K+A) 200 µl/l, and Krebs + Verapamil (K+V) 200 µl/l for 30, 45, 60 and 90 min. Nitrite concentration was measured by Griess assay at 540 nm. H&E staining was performed for histologic test. Statistical analysis was performed using SPSS (V16). Results were expressed as (Means ± SE) followed by One-Way ANOVA for finding best preservative solution. Repeated measurement test was used to investigate best time. In all analysis, (PHB=K=K+A=K+P). Also, our investigations showed that NO concentration in (K+V) has the highest rate in time 90 min (10.07±0.56, p=0.002). More than 50 percent of endothelial cells stay normal in (K+V) compare with other solutions. Conclusion: It seems that (K+V) is the best solution for the maintenance of normal physiology of SVGs endothelial cells. The most appropriate SVGs endothelial function is within 90 minutes after harvesting.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
We use cookies and other tracking technologies to work properly, to analyze our website traffic, and to understand where our visitors are coming from. More InfoGot It!