Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJCIT. 2022; 8(1): 87-97


AN IMPROVED FRACTIONAL TWO-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION

Falah Alsaqre.




Abstract

Two-dimensional principal component analysis (2DPCA) is a subspace technique used for facial image representation and recognition. Standard 2DPCA may be unable to extract informative features to adequately describe the inherent structural information of the original facial images with the presence of irrelevant variations such as lighting conditions, facial expressions, and so on. To deal with this, an improved fractional two-dimensional principal component analysis (IF2DPCA) is proposed in this paper. It is an extension of fractional 2DPCA (F2DPCA), which was developed based on the concept of fractional covariance matrix (FCM). IF2DPCA employs the same principle as F2DPCA for learning a projective matrix but further extends the use of fractional transformed 2D images throughout the entire recognition task. As a result, the feature subspace modeled by IF2DPCA maintains the most informative content of the 2D face images and is relatively insensitive to irrelevant variations. Experimental results on three face datasets confirm the effectiveness of the suggested IF2DPCA method in facial recognition.

Key words: Face Recognition, Feature Extraction, Fractional Covariance Matrix, 2DPCA, F2DPCA.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.