Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

Open Vet J. 2016; 6(3): 215-222


Antimicrobial Susceptibility and Minimal Inhibitory Concentration of Pseudomonas aeruginosa Isolated from Septic Ocular Surface Disease in Different Animal Species

Lucianne Leigue, Fabiano Montiani-Ferreia, Bret A. Moore.




Abstract
Cited by 25 Articles

Purpose: to evaluate the antibiotic susceptibility profile of Pseudomonas aeruginosa isolated from different animal species with septic ocular surface disease. Sixteen strains of P. aeruginosa were isolated from different species of animals (dog, cat, horse, penguin and brown bear) with ocular surface diseases such as conjunctivitis, keratocojnuctivits sicca and ulcerative keratitis. These isolates were tested against 11 different antimicrobials agents using the Kirby-Bauer disk-diffusion method. Minimum inhibitory concentrations (MICs) were determined using E-tests for two antibiotics (tobramycin and ciprofloxacin) commonly used in veterinary ophthalmology practice. Imipenem was the most effective antibiotic, with 100% of the strains being susceptible, followed by amikacin (87.5%), gentamicin, norfloxacin, gatifloxacin and polymyxin (both with 81.5%of susceptibility). MIC90 of ciprofloxacin was 2 µg/ml and the values found ranged from 0.094 µg/ml to 32 µg/ml. For tobramycin, MIC90 was 32 µg/ml and ranged from 0.25 µg/ml to 256 µg/ml. The most effective in vitro antibiotic tested against P. aeruginosa in this study was imipenem, followed by amikacin. A commercial available ciprofloxacin eye drops at 3 mg/ml was in vitro effective against all strains tested in this study if applied up to 4 hours after instillation. Whereas for tobramycin at a commercial presentation at 3 mg/ml the drug was not in vitro effective against some strains in this study. Thus for ocular infections with P. aeruginosa when using tobramycin the ideal recommendation would be to either use eye drops with higher concentrations or decrease the frequency intervals from four to a minimum of every two hours.

Key words: Antibiotic. Bacteria. Ocular infections. Antimicrobial profile.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.