Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

J App Pharm Sci. 2017; 7(4): 125-133


Mathematical modeling of drug release from swellable polymeric nanoparticles

Soha Azadi, Hajar Ashrafi, Amir Azadi.




Abstract

This study aims to provide a comparative mathematical analysis of drug release from swellable polymeric delivery systems to find a general model applicable to multi-mechanistic release. Drug release data from various swellable polymeric nanoparticles extracted from the literature were applied to the eight conventional models. Coefficient of determination (R2) and absolute percent error (E%) were calculated for each set as well as the overall error (OE), the number of error (NE) and the akaike information criterion (AIC) for all sets. The model has the highest R2 and the number of the error, as well as both the lowest overall error (OE) and the akaike information criterion, was considered as the best one. Among the models Weibull (W) model produced R2 and OE values of 0.93 and 8.79, respectively. Also, the AIC value and the number of errors less than 5% for the model was -34.93 and 46.15% of a total number of data sets respectively. Mathematical modeling of drug release from a carrier is often attempted to recognize the main determinants of the drug release rate from the carrier with the final goal of the identification of the ideal set of conditions leading to the desired release profile in vivo.

Key words: mathematical modeling, drug release, swellable polymeric nanoparticles, nanotechnology, polymeric nanoparticles






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.