Aim: Skeletal muscle ischemia-reperfusion (IR) injury is a critical clinical issue characterized by oxidative stress, inflammation, and tissue damage, potentially leading to systemic organ dysfunction. Ellagic acid (EA), a naturally occurring polyphenolic compound, is widely recognized for its strong antioxidative, anti-inflammatory, and antiapoptotic effects demonstrated in various preclinical studies. This study sought to assess the therapeutic effects of EA in a rat model of lower extremity IR injury, focusing on histopathological and biochemical parameters.
Material and Methods: 24 male Albino Wistar rats were randomly divided into four groups: Sham, EA, IR, and IR+EA. IR injury was induced by occluding the infrarenal abdominal aorta for 45 minutes, followed by 120 minutes of reperfusion. EA (40 mg/kg) was administered intraperitoneally prior to reperfusion. Left gastrocnemius muscle samples were collected for histopathological and biochemical analyses, including TOS, TAS, OSI, levels and PON-1 enzyme activity.
Results: The IR group showed marked muscle injury, with a significantly higher total injury score (10.00±0.63) compared to the Sham (2.00±0.58) and EA groups (2.00±0.52) (p
Key words: Ischemia-reperfusion, ellagic acid, oxidative damage, reperfusion injury
|