Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJCIT. 2024; 10(4): 443-452


DENOISING DIFFUSION PROBABILISTIC MODEL WITH WAVELET PACKET TRANSFORM FOR FINGERPRINT GENERATION

LI CHEN, YONG HUAH CHAN.




Abstract

The majority of contemporary fingerprint synthesis is based on the Generative Adversarial Network (GAN). Recently, the Denoising Diffusion Probabilistic Model (DDPM) has been demonstrated to be more effective than GAN in numerous scenarios, particularly in terms of diversity and fidelity. This research develops a model based on the enhanced DDPM for fingerprint generation. Specifically, the image is decomposed into sub-images of varying frequency sub-bands through the use of a wavelet packet transform (WPT). This method enables DDPM to operate at a more local and detailed level, thereby accurately obtaining the characteristics of the data. Furthermore, a polynomial noise schedule has been designed to replace the linear noise strategy, which can result in a smoother noise addition process. Experiments based on multiple metrics on the datasets SOCOFing and NIST4 demonstrate that the proposed model is superior to existing models.

Key words: Diffusion model, Fingerprint, Image processing, Wavelet packet transform






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.