Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

J App Pharm Sci. 2016; 6(2): 032-043


Nano-Crystalline Cellulose as a Novel Tablet Excipient for Improving Solubility and Dissolution of Meloxicam

Laila H. Emara, Ahmed A. El-Ashmawy, Nesrin F. Taha, Khaled A. El-Shaffei, El-Sayed M. Mahdey, Heba K. El-kholly.




Abstract

This study explored the effect of nano-crystalline cellulose (NCC) on Meloxicam (MX) solid dispersion (SD) prepared by co-grinding technique compared to micro-crystalline cellulose (MCC) in presence of lactose. MX-tablets were prepared by direct compression of different co-ground SDs or physical mixtures. The solubility, dissolution, SEM and DSC of different preparations were studied. Flow-through cell apparatus (FTC) was used to study the dissolution of MX from tablets at pH 7.4. Generally, the results revealed that increasing NCC loadings showed a direct increase in both the solubility and dissolution of MX. MCC did not improve either the solubility or the dissolution of MX in the physical mixture, while, co-grinding dramatically decreased the dissolution rate of MX. It was interesting to find that grinding of MX-powder alone or in a mixture with lactose highly increased MX solubility and dissolution. SEM as well as DSC were found to be very good tools, without a single exception, to describe the observed solubility and dissolution of MX in these proposed preparations. SEM-images showed the particle size reduction upon grinding or co-grinding techniques. While DSC-data proved that the crystalline structure of MX has been changed to an amorphous state.

Key words: Co-grinding solid dispersion; flow-through cell apparatus; water insoluble drug; micro-crystalline cellulose; scanning electron microscope; differential scanning calorimetry






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.