Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

J App Pharm Sci. 2024; 14(11): 53-61


Enhanced bioavailability through quality by design optimization of ceritinib nanostructured lipid carriers: Formulation, characterization, and stability evaluation

Kunchithapatham Janakiraman, Katla Venu Madhav, Sunil Kumar Chaitanya Padavala, Naga Haritha Pamujula.




Abstract

Ceritinib is a lung cancer treatment that inhibits the Anaplastic Lymphoma Kinase (ALK). ALK is a protein involved in cell signaling and growth regulation. Initially discovered in anaplastic large cell lymphoma, ALK has since been found to play critical roles in various cancers and neurodevelopmental processes. Targeted therapies that inhibit ALK have revolutionized treatment for ALK-positive cancers, improving outcomes significantly. Research continues to explore ALK’s intricate mechanisms and its potential as a therapeutic target beyond oncology, highlighting its broad biological importance. In this study, Ceritinib-drug loaded nanostructured lipid carriers were produced using a modified homogenization process by increasing number of homogenisation cycles followed by probe sonication. A central composite design was utilised to investigate the effect of liquid lipid (A), emulsifier (B), and co-surfactant (C) concentrations on particle size (Response 1) and entrapment efficiency (Response 2). The specific impacts of these parameters on particle size and entrapment efficiency were shown in response surfaces, using Derringer’s desirability technique. Formulation 8 with 0.1% Capmul, 0.15% egg lecithin, and 0.37% poloxamer 188 was subjected to further evaluation as it had minimal particle size and maximum entrapment efficiency. The SEM analysis was performed to confirm the size of the particle which was within the nano range. The in vitro studies indicated the maximum drug release (84.6%±2.3% in 12 hours) from that of the marketed formulation (54.2%±2.5% in 12 hours). After 90 days of stability testing, there was no significant variation (p < 0.05) in parameters like particle size and entrapment efficiency.

Key words: Ceritinib, Nanostructured Lipid Carriers, Bioavailability enhancement, BCS class IV, anti-cancer, Probe Sonication, Statistically significant.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.