Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Rapid decolorization of synthetic melanoidin by bacterial extract and their mediated silver nanoparticles as support

R. Palani velan, P. M. Ayyasamy, R. Kathiravan, B. Subashni.




Abstract
Cited by 10 Articles

The present study was aimed at utilization of biosynthesized silver nanoparticles (AgNPs) and its mediated synthetic melanoidin decolourization using bacterial extract in an immobilized condition. Biosynthesis of silver nanoparticles was done by using the Bacillus sp. BAC1 via extracellular methodology. Brown color biosynthesized silver nanoparticles were characterized using UV-Visible spectroscopic analysis. Further characterization using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and Atomic force microscopic (AFM) analysis revealed that nanoparticles were spherical in shape with smooth surface morphology. Bacterial extracellular supernatant exhibited more than 65% of melanoidin decolourization (in 12 h) under normal conditions. In contrast, under similar conditions, biosynthesized AgNPs showed 82% removal. The cell free extract immobilized with synthesized AgNPs yields maximum melanoidin removal 92% in 12 h; this emphasizes nano-coupled biomaterial immobilization as a suitable technique for rapid melanoidin decolourization.

Key words: Melanoidin, Molasses spent wash, Decolourization, Silver nanoparticle, Immobilization.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.