ADVERTISEMENT

Home|Journals|Articles by Year|Audio Abstracts
 

-



Identifying key determinants of rice yield potential through multiple statistical techniques

Md. Asif Rahman, Md. Abdullah Al Mamun, Mohammad Rafiqul Islam, Md. Ruhul Quddus, Naznin Akter Munna, Md. Abdul Azim, Md. Sakhawat Hosen Galib, Khandakar Md Iftekharuddaula, Md. Abu Syed.




Abstract

Grain yield is complex traits, influenced by genetics and the environment, posing challenges for prediction. The goal of the present study was to identify key traits that contribute to rice yield by applying seven statistical techniques. The study examined twenty-four rice genotypes following a randomized complete block design (RCBD) with three replications. Pearson's correlation analysis revealed several traits exhibiting significant positive correlations with grain yield (r≥0.60), including thousand-seed weight (r = 0.63), filled seeds/panicle (r = 0.74), and number of panicles/m2 (r = 0.70). Multiple linear regression identified significant predictors as the number of panicles/m2 (R=0.01) and thousand-seed weight (Coefficient=0.12). Stepwise linear regression suggested key yield indicators viz. the number of panicles/m2 (R=0.01), filled seeds/panicle (R=0.02), thousand-seed weight (R=0.11), and panicle length (R=0.13). Bayesian linear regression found similar traits with a Bayes factor of 995.2 and an R-squared value of 0.77. Exploratory factor analysis showed grain number/panicle, filled seeds percentage, filled seeds/panicle, thousand-seed weight, grain width, and panicles/m2 are highly influenced grain yield and explained 61.9% total variance. Principal components analysis revealed the first three components explaining 79.1% of yield variation, with thousand-seed weight, grain width, and panicle number/m2. Path analysis demonstrated the number of panicles/m2, filled seeds/panicle, thousand-seed weight, and panicle length have large and significant positive direct effects on grain yield. These findings strongly suggest that selecting breeding materials with traits like high panicle density/m2, larger panicle size, more filled seeds/panicle, and higher thousand-seed weight, can significantly increase the rice yield.

Key words: Rice yield components, Stepwise regression, Bayesian linear regression, Exploratory factor analysis, Path analysis.





publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.


Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Author Tools
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


We use cookies and other tracking technologies to work properly, to analyze our website traffic, and to understand where our visitors are coming from. More Info Got It!