Home|Journals|Articles by Year|Audio Abstracts
 

Review Article



Next-generation subunit vaccine delivery systems: Design, applications, and prospects

Fredmoore Orosco, Deborah Nicdao.




Abstract

Subunit vaccine delivery systems have emerged as groundbreaking strategies to enhance immunogenicity and efficacy, overcoming the limitations of traditional vaccine approaches. This review article delves into the vast landscape of subunit vaccine delivery systems, encompassing diverse platforms, such as polymer-based, lipid-based, micelle-based, phage-based, hydrogel-based, inorganic-based, and emulsion-based carriers. This review aimed to comprehensively explore the advancements, challenges, and potential of these delivery systems in revolutionizing vaccine development. Key findings revealed that polymer-based systems offer tunable properties for sustained release, while lipid-based and micelle-based carriers enable efficient encapsulation of hydrophobic antigens. Phage-based platforms leverage host–pathogen interactions, whereas hydrogel-based carriers provide localized delivery and adjuvant effects. Inorganic nanoparticles and emulsions offer targeted delivery and improved immune responses. These findings offer opportunities to enhance the immunogenicity of subunit vaccines, optimize antigen delivery, and tailor responses to specific diseases. This review can guide researchers, clinicians, and policymakers in harnessing the strengths of diverse delivery systems to improve vaccination strategies. By shedding light on their design, applications, and impacts, this review serves as a roadmap for the development of next-generation vaccines with the potential to transform global health-care paradigms.

Key words: adjuvants, immune response, infectious diseases, subunit vaccines, vaccine delivery systems






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.