Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

J App Pharm Sci. 2024; 14(5): 232-239


Computer-aided drug design of novel nirmatrelvir analogs inhibiting main protease of Coronavirus SARS-CoV-2

Kateryna O. Lohachova, Anastasiia S. Sviatenko, Alexander Kyrychenko, Volodymyr V. Ivanov, Tierry Langer, Sergiy M. Kovalenko, Oleg N. Kalugin.




Abstract

A computer-aided drug design of new derivatives of nirmatrelvir, an orally active inhibitor of the main-protease (Mpro) of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), was performed to identify its analogues with a higher antiviral potency. The following workflow was used: first, an evolutionary library composed of 1,866 analogues was generated starting from a parent nirmatrelvir scaffold and going through small mutation, fitness scoring, ranking, and selection. Second, the generated library was preprocessed and filtered against a 3-D pharmacophore model of nirmatrelvir built from its X-ray structure in a co-crystalized complex with the Mpro enzyme, allowing us to reduce the chemical space to 32 active analogues. Third, structure-based molecular docking against two different enzyme structures further ranked these active candidates, so that up to eight better-binding analogs were identified. The selected hit-analogues target the Mpro enzymes of SARS-CoV-2 with a higher binding affinity than a parent nirmatrelvir. The main structural modifications that increase the overall inhibitory affinity are identified at the azabicyclo[3.1.0] hexane and 2-oxopyrrolidine fragments. A characteristic structural feature of the inhibitor binding with the Mpro active centre is the similar location of the trifluoroacetylamino fragment, which is observed for most hit-analogues. The suggested workflow of the computer-aided rational design of new antiviral noncovalent inhibitors based on the scaffold of approved drugs is a promising, extremely low-cost, and time-efficient approach for the development of new potential pharmaceutical ingredients for the treatment of Coronavirus Disease 2019.

Key words: COVID-19; nirmatrelvir; antiviral activity; SARS-CoV-2; Mpro






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.