ADVERTISEMENT

Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJCIT. 2023; 9(3): 189-206


Prediction of People Sentiments on Twitter using Machine Learning Classifiers During Russian Aggression in Ukraine

Mohammed Rashad Baker, Kamal h. Jihad, Yalmaz Najmaldin Taher.




Abstract

Social media has become an excellent way to discover people’s thoughts about various topics and situations. In recent years, many studies have focused on social media during crises, including natural disasters or wars caused by individuals. This study examines how people expressed their feelings on Twitter during the Russian aggression on Ukraine. This study met two goals: the collected data was unique, and it used Machine Learning (ML) to classify the tweets based on their effect on people’s feelings. The first goal was to find the most relevant hashtags about aggression to locate the data set. The second goal was to use several well-known ML models to organize the tweets into groups. The experimental results have shown that most of the performed ML classifiers have higher accuracy with a balanced dataset. However, the findings of the demonstrated experiments using data balancing strategies would not necessarily indicate that all classes would perform better. Therefore, it is essential to highlight the importance of comparing and contrasting the data balancing strategies employed in Sentiment Analysis (SA) and ML studies, including more classifiers and a more comprehensive range of use cases.

Key words: Sentiment Analysis, Machine Learning, Classification Algorithm, Imbalanced Data Classification, Russian-Aggression in Ukraine






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Author Tools
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.