Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJCIT. 2023; 9(1): 36-52


Interpreting the Relevance of Readability Prediction Features

Safae Berrichi,Naoual Nassiri,Azzeddine Mazroui,Abdelhak Lakhouaja.




Abstract

Text readability is one of the main research areas widely developed in several languages but highly limited when dealing with the Arabic language. The main challenge in this area is to identify an optimal set of features that represent texts and allow us to evaluate their readability level. To address this challenge, we propose in this study various feature selection methods that can significantly retrieve the set of discriminating features representing Arabic texts. The second aim of this paper is to evaluate different sentence embedding approaches (ArabicBert, AraBert, and XLM-R) and compare their performances to those obtained using the selected linguistic features. We performed experiments with both SVM and Random Forest classifiers on two different corpora dedicated to learning Arabic as a foreign language (L2). The obtained results show that reducing the number of features improves the performance of the readability prediction models by more than 25% and 16% for the two adopted corpora, respectively. In addition, the fine-tuned Arabic-BERT model performs better than the other sentence embedding methods, but provided less improvement than the feature-based models. Combining these methods with the most discriminating features produced the best performance.

Key words: Readability, Feature Selection, Sentence Embedding, Arabic language, Education






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.