Home|Journals|Articles by Year|Audio Abstracts
 

Review Article



The potential effects of isoflavones on nuclear receptor modulation in bone remodeling: A review

Haryati Ahmad Hairi, Nor Hidayah Mustafa, Putri Ayu Jayusman, Ahmad Nazrun Shuid.




Abstract
Cited by 0 Articles

Isoflavones are plant-based compounds that act as phytoestrogens by mimicking the action of estrogen. Osteoblasts and osteoclasts are the key cells for bone remodeling, a process that includes bone proliferation, differentiation, deposition, and resorption. Studies have demonstrated that isoflavones, a class of flavonoids found almost exclusively in soybeans, could prevent bone loss. Recent findings revealed that isoflavones could activate nuclear receptors (NRs) and regulate bone formation and resorption processes. This current research discussed the principal actions of isoflavones mediated by NRs on bone remodeling such as steroid receptors (estrogen receptor, estrogen-related receptor, and androgen receptor) and metabolic receptors including peroxisome proliferator-activated receptor-γ. Isoflavones modulate osteogenesis by fine-tuning physiological responses on NR sensors and their transcriptional networks. Hence, this present review will dive deep into the use of several isoflavones as potential osteoporosis treatment through NR-controlling gene regulation.

Key words: isoflavones, nuclear receptor, bone remodelling, bone formation, bone resorption, osteoporosis






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.