In a little over a century, plastic has gone from being addressed as a scientific marvel to being reviled as an ecological scourge. Development and modernization have brought about a colossal swell in global plastic fabrication and consumption, due to its immense applications, versatility, and relatively paltry cost. The main bottleneck lies in its disposal. They tend to endure in the environment for an implausibly long time and thus traverse from one habitat to another and then get incorporated into the food chain, posing ignoramus risks for communities, ecosystems, and the planet. Indiscriminate disposal of plastic waste at startling rates has driven a search for an all-inclusive, proficient, and sustainable remediation research work looking for a practical alternative to manage, process, and dispose of plastic debris. Albeit, there are several processes such as incineration, landfilling, and recycling available but are unsustainable, costly, and have serious repercussions on the environment, wildlife, marine, and human health. Thus, the contemporary focus has been highlighted on the need for substitutes such as biodegradable plastics and surrogate disposal approaches, namely, the potential of microbes to degrade synthetic plastics with no inimical impact. In this regard, bacteria and fungi have been shown to ingurgitate these polymers and metamorphose them into environmentally friendly carbon compounds. The present review covers the types of plastics, their applications, and plastic degradation with more weight on the multifaceted roles played by microorganisms, their modus operandi, and probable enzymatic mechanisms.
Key words: Biodegradation, Environment, Enzymes, Factors, Microbes, Plastics
|