A novel approach for hepatocellular carcinoma detection with region merging segmentation method
Mustafa Koc, Firat Hardalac, Berkan Ural.
Abstract
We present a noninvasive method for the detection and an advanced segmentation of Hepatocellular carcinoma (HCC) based on Computed Tomography (CT) images.This proposed method basically starts with the processing of the data set. 60 CT images are prepared for the segmentation process. Image data is divided into two groups; 50 CT images of the HCC, and 10 CT images of the normal liver. The ground truth images are created with the specialist abdominal radiologist. Images are in 256x256 µm size in JPEG format. For the segmentation part, the Statistical Region Merging method is used. The proposed method consists of three main parts, these are thresholding, segmentation, and estimation of ROC parameters. By using the database and the ground truth, according to the simulation results, the average of the sensitivity, specificity, and accuracy are obtained as 0.7476 %, 0.9723 %, and 0.9502 %, respectively. In conclusion, HCC is the most common primary malignant tumor in the liver. It is considered an important and life-threatening disease. Early detection of liver cancer has become very important for the patients. The Region Merging Segmentation Method is a very useful liver segmentation technique for detection of the HCC.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
We use cookies and other tracking technologies to work properly, to analyze our website traffic, and to understand where our visitors are coming from. More InfoGot It!