Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJEE. 2023; 9(2): 241-271


A Real-Time Electronically Tunable All-MOS Universal Biquadratic Voltage-Mode Filter

Sherif M. Sharroush, Yasser S. Abdalla.




Abstract

— In this paper, an electronically tunable universal biquadratic voltage-mode filter that is based only on MOS transistors is proposed. Configuration of the proposed filter is simple and there is no need to use component matching. Since the proposed filter contains only MOS transistors, it is very suitable for implementation in system-on-chip (SoC) applications. The cutoff frequency of the lowpass (LP) and highpass (HP) filters as well as the center frequency and the bandwidth of the bandpass (BP) and bandstop (BS) filters can be controlled either in a continuous range or in a discrete manner by means of a digital control word. Besides, the filter type can be changed during the real time by an appropriate code. Operation of all the filtering functions are verified by simulation using the Berkeley predictive-technology models (BPTM) of the 130 nm complementary metal-oxide semiconductor (CMOS) technology with power-supply voltage, VDD, of 1.2 V. The proposed filter is analyzed quantitatively, and the effects of the total-harmonic distortion (THD), noise, process, voltage and temperature (PVT) variations are also investigated. The average power consumption of the LP, HP, BP, BS, and allpass (AP) filters are found to be 30, 118, 74, 118, and 30 (all in µW). The price paid for all these advantages is more sensitivity to process variations for the lowpass filter.

Key words: Bandwidth; Distortion; Resonant frequency; Sensitivity; Tuning; Universal filter; Voltage mode; CMOS technology.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.